Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice.

Identifieur interne : 000655 ( Main/Exploration ); précédent : 000654; suivant : 000656

Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice.

Auteurs : Hongli Wu [États-Unis] ; Yibo Yu [République populaire de Chine] ; Larry David [États-Unis] ; Ye-Shih Ho ; Marjorie F. Lou [États-Unis]

Source :

RBID : pubmed:25362663

Descripteurs français

English descriptors

Abstract

Glutaredoxin 2 (Grx2) is an isozyme of glutaredoxin1 (thioltransferase) present in the mitochondria and nucleus with disulfide reductase and peroxidase activities, and it controls thiol/disulfide balance in cells. In this study, we investigated whether Grx2 gene deletion could induce faster age-related cataract formation and elucidated the biochemical changes effected by Grx2 gene deletion that may contribute to lens opacity. Slit lamp was used to examine the lenses in Grx2 knock-out (KO) mice and age-matched wild-type (WT) mice ages 1 to 16 months. In the Grx2 null mice, the lens nuclear opacity began at 5 months, 3 months sooner than that of the control mice, and the progression of cataracts was also much faster than the age-matched controls. Lenses of KO mice contained lower levels of protein thiols and GSH with a significant accumulation of S-glutathionylated proteins. Actin, αA-crystallin, and βB2-crystallin were identified by Western blot and mass spectroscopy as the major S-glutathionylated proteins in the lenses of 16-month-old Grx2 KO mice. Compared with the WT control, the lens of Grx2 KO mice had only 50% of the activity in complex I and complex IV and less than 10% of the ATP pool. It was concluded that Grx2 gene deletion altered the function of lens structural proteins through S-glutathionylation and also caused severe disturbance in mitochondrial function. These combined alterations affected lens transparency.

DOI: 10.1074/jbc.M114.620047
PubMed: 25362663
PubMed Central: PMC4276876


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice.</title>
<author>
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Yibo" sort="Yu, Yibo" uniqKey="Yu Y" first="Yibo" last="Yu">Yibo Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="David, Larry" sort="David, Larry" uniqKey="David L" first="Larry" last="David">Larry David</name>
<affiliation wicri:level="2">
<nlm:affiliation>the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
<affiliation>
<nlm:affiliation>the Institute of Environment Health Sciences, Wayne State University, Detroit, Michigan 48201, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska 698583 mlou1@unl.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, University of Nebraska Medical Center, Omaha</wicri:regionArea>
<wicri:noRegion>Omaha</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25362663</idno>
<idno type="pmid">25362663</idno>
<idno type="doi">10.1074/jbc.M114.620047</idno>
<idno type="pmc">PMC4276876</idno>
<idno type="wicri:Area/Main/Corpus">000584</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000584</idno>
<idno type="wicri:Area/Main/Curation">000584</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000584</idno>
<idno type="wicri:Area/Main/Exploration">000584</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice.</title>
<author>
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Yu, Yibo" sort="Yu, Yibo" uniqKey="Yu Y" first="Yibo" last="Yu">Yibo Yu</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009</wicri:regionArea>
<placeName>
<settlement type="city">Hangzhou</settlement>
<region type="province">Zhejiang</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="David, Larry" sort="David, Larry" uniqKey="David L" first="Larry" last="David">Larry David</name>
<affiliation wicri:level="2">
<nlm:affiliation>the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Oregon</region>
</placeName>
<wicri:cityArea>the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
<affiliation>
<nlm:affiliation>the Institute of Environment Health Sciences, Wayne State University, Detroit, Michigan 48201, and.</nlm:affiliation>
<wicri:noCountry code="subField">and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska 698583 mlou1@unl.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, University of Nebraska Medical Center, Omaha</wicri:regionArea>
<wicri:noRegion>Omaha</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cataract (genetics)</term>
<term>Cystine (metabolism)</term>
<term>Electron Transport Complex I (metabolism)</term>
<term>Electron Transport Complex IV (metabolism)</term>
<term>Eye Proteins (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Lens Capsule, Crystalline (metabolism)</term>
<term>Lens Capsule, Crystalline (pathology)</term>
<term>Male (MeSH)</term>
<term>Mice, 129 Strain (MeSH)</term>
<term>Mice, Knockout (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Capsule du cristallin (anatomopathologie)</term>
<term>Capsule du cristallin (métabolisme)</term>
<term>Cataracte (génétique)</term>
<term>Complexe I de la chaîne respiratoire (métabolisme)</term>
<term>Complexe IV de la chaîne respiratoire (métabolisme)</term>
<term>Cystine (métabolisme)</term>
<term>Délétion de gène (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Mâle (MeSH)</term>
<term>Protéines de l'oeil (métabolisme)</term>
<term>Souris de souche-129 (MeSH)</term>
<term>Souris knockout (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Cystine</term>
<term>Electron Transport Complex I</term>
<term>Electron Transport Complex IV</term>
<term>Eye Proteins</term>
<term>Glutathione</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Capsule du cristallin</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cataract</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cataracte</term>
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lens Capsule, Crystalline</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Capsule du cristallin</term>
<term>Complexe I de la chaîne respiratoire</term>
<term>Complexe IV de la chaîne respiratoire</term>
<term>Cystine</term>
<term>Glutathion</term>
<term>Protéines de l'oeil</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Lens Capsule, Crystalline</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Deletion</term>
<term>Male</term>
<term>Mice, 129 Strain</term>
<term>Mice, Knockout</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Délétion de gène</term>
<term>Mâle</term>
<term>Souris de souche-129</term>
<term>Souris knockout</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin 2 (Grx2) is an isozyme of glutaredoxin1 (thioltransferase) present in the mitochondria and nucleus with disulfide reductase and peroxidase activities, and it controls thiol/disulfide balance in cells. In this study, we investigated whether Grx2 gene deletion could induce faster age-related cataract formation and elucidated the biochemical changes effected by Grx2 gene deletion that may contribute to lens opacity. Slit lamp was used to examine the lenses in Grx2 knock-out (KO) mice and age-matched wild-type (WT) mice ages 1 to 16 months. In the Grx2 null mice, the lens nuclear opacity began at 5 months, 3 months sooner than that of the control mice, and the progression of cataracts was also much faster than the age-matched controls. Lenses of KO mice contained lower levels of protein thiols and GSH with a significant accumulation of S-glutathionylated proteins. Actin, αA-crystallin, and βB2-crystallin were identified by Western blot and mass spectroscopy as the major S-glutathionylated proteins in the lenses of 16-month-old Grx2 KO mice. Compared with the WT control, the lens of Grx2 KO mice had only 50% of the activity in complex I and complex IV and less than 10% of the ATP pool. It was concluded that Grx2 gene deletion altered the function of lens structural proteins through S-glutathionylation and also caused severe disturbance in mitochondrial function. These combined alterations affected lens transparency. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25362663</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>289</Volume>
<Issue>52</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice.</ArticleTitle>
<Pagination>
<MedlinePgn>36125-39</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M114.620047</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin 2 (Grx2) is an isozyme of glutaredoxin1 (thioltransferase) present in the mitochondria and nucleus with disulfide reductase and peroxidase activities, and it controls thiol/disulfide balance in cells. In this study, we investigated whether Grx2 gene deletion could induce faster age-related cataract formation and elucidated the biochemical changes effected by Grx2 gene deletion that may contribute to lens opacity. Slit lamp was used to examine the lenses in Grx2 knock-out (KO) mice and age-matched wild-type (WT) mice ages 1 to 16 months. In the Grx2 null mice, the lens nuclear opacity began at 5 months, 3 months sooner than that of the control mice, and the progression of cataracts was also much faster than the age-matched controls. Lenses of KO mice contained lower levels of protein thiols and GSH with a significant accumulation of S-glutathionylated proteins. Actin, αA-crystallin, and βB2-crystallin were identified by Western blot and mass spectroscopy as the major S-glutathionylated proteins in the lenses of 16-month-old Grx2 KO mice. Compared with the WT control, the lens of Grx2 KO mice had only 50% of the activity in complex I and complex IV and less than 10% of the ATP pool. It was concluded that Grx2 gene deletion altered the function of lens structural proteins through S-glutathionylation and also caused severe disturbance in mitochondrial function. These combined alterations affected lens transparency. </AbstractText>
<CopyrightInformation>© 2014 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Hongli</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Yibo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, Eye Center of the 2nd Affiliated Hospital, Medical College of Zhejiang University, Hangzhou 310009, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>David</LastName>
<ForeName>Larry</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Ye-Shih</ForeName>
<Initials>YS</Initials>
<AffiliationInfo>
<Affiliation>the Institute of Environment Health Sciences, Wayne State University, Detroit, Michigan 48201, and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lou</LastName>
<ForeName>Marjorie F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>From the School of Veterinary Medicine and Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, the Department of Ophthalmology, University of Nebraska Medical Center, Omaha, Nebraska 698583 mlou1@unl.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 EY010572</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY10595</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 ES06639</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 ES006639</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY010595</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>11</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005136">Eye Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516009">Glrx2 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>48TCX9A1VT</RegistryNumber>
<NameOfSubstance UI="D003553">Cystine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.9.3.1</RegistryNumber>
<NameOfSubstance UI="D003576">Electron Transport Complex IV</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.1.1.2</RegistryNumber>
<NameOfSubstance UI="D042967">Electron Transport Complex I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002386" MajorTopicYN="N">Cataract</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003553" MajorTopicYN="N">Cystine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042967" MajorTopicYN="N">Electron Transport Complex I</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003576" MajorTopicYN="N">Electron Transport Complex IV</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005136" MajorTopicYN="N">Eye Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007903" MajorTopicYN="N">Lens Capsule, Crystalline</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057507" MajorTopicYN="N">Mice, 129 Strain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018345" MajorTopicYN="N">Mice, Knockout</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Age-related Cataract</Keyword>
<Keyword MajorTopicYN="N">Electron Transport System</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin 2</Keyword>
<Keyword MajorTopicYN="N">Oxidative Stress</Keyword>
<Keyword MajorTopicYN="N">α-Crystallin Protein</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25362663</ArticleId>
<ArticleId IdType="pii">M114.620047</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M114.620047</ArticleId>
<ArticleId IdType="pmc">PMC4276876</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Exp Eye Res. 1996 Oct;63(4):433-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Surv Ophthalmol. 2000 Sep-Oct;45(2):115-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11033038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):2108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8424-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8378314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2004 Mar;3(3):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15031734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Jul;75(7):3244-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">277922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 1979 Jul-Aug;10(4):437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">505482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2000 Jun;70(6):745-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10843779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2005 Sep;81(3):276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16129095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Nov 1;43(9):1299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1983 Feb 7;152(1):114-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6840271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1983 Jan;36(1):15-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6825728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2001 Jan 26;104(2):173-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11207359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2008 Oct;49(10):4497-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Nov 9;408(6809):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2002 Jan;74(1):113-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11878824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Oct;1797(10):1705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 19;274(8):4735-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1991 Jun 28;65(7):1153-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2065352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1988 Apr;46(4):517-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3133235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1999 May;68(5):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10328968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 22;288(12):8365-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23335511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2005 Oct;46(10):3783-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16186363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Nov 14;272(46):29099-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9360985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1992 Dec;55(6):889-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1486943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2003 Aug;44(8):3263-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12882768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Dec;20(14):2645-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17065220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Ophthalmol. 2001 Mar;85(3):261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11222327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2003;53 Suppl 3:S26-36; discussion S36-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12666096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Jun 15;21(12):1945-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20427569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ocul Biol Dis Infor. 2009 Dec 12;2(4):223-234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1986 Jun;42(6):607-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3720875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1988 Jul;47(1):17-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3409984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Retin Eye Res. 2003 Sep;22(5):657-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Jan 16;29(2):464-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2302385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2004 Jan;45(1):230-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14691178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1977 Aug;25(2):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">913506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2015 Jan;130:58-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25479045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3913-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12655060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1995 Sep;9(12):1173-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7672510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Eye Res. 1989 Sep;8(9):883-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2791632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1980 Jul 15;190(1):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7447929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26497-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2007 Apr;53(4):729-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Ophthalmol. 1989 Jul;107(7):991-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2751471</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
<li>Texas</li>
<li>Zhejiang</li>
</region>
<settlement>
<li>Hangzhou</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Ho, Ye Shih" sort="Ho, Ye Shih" uniqKey="Ho Y" first="Ye-Shih" last="Ho">Ye-Shih Ho</name>
</noCountry>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
</region>
<name sortKey="David, Larry" sort="David, Larry" uniqKey="David L" first="Larry" last="David">Larry David</name>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
</country>
<country name="République populaire de Chine">
<region name="Zhejiang">
<name sortKey="Yu, Yibo" sort="Yu, Yibo" uniqKey="Yu Y" first="Yibo" last="Yu">Yibo Yu</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000655 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000655 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25362663
   |texte=   Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25362663" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020